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Abstract Species distribution models are used to aid our

understanding of the processes driving the spatial patterns of

species’ habitats. This approach has received criticism,

however, largely because it neglects landscape metrics. We

examined the relative impacts of landscape predictors on the

accuracy of habitat models by constructing distribution

models at regional scales incorporating environmental

variables (climate, topography, vegetation, and soil types)

and secondary species occurrence data, and using them to

predict the occurrence of 36 species in 15 forest fragments

where we conducted rapid surveys. We then selected six

landscape predictors at the landscape scale and ran general

linear models of species presence/absence with either a

single scale predictor (the probabilities of occurrence of the

distribution models or landscape variables) or multiple scale

predictors (distribution models ? one landscape variable).

Our results indicated that distribution models alone had poor

predictive abilities but were improved when landscape pre-

dictors were added; the species responses were not, however,

similar to the multiple scale predictors. Our study thus

highlights the importance of considering landscape metrics

to generate more accurate habitat suitability models.

Keywords Ecological niche model � Generalized linear

models � Habitat suitability � Landscape structure � Maxent

Introduction

Understanding the processes driving species distributions is

fundamental for both theoretical and practical reasons,

including conservation planning (Rosenzweig 1995; Mar-

gules and Pressey 2000; Engler et al. 2004; Brotons et al.

2004). Distribution patterns are not always easy to discern

or understand, however, because they are influenced by

environmental variables operating at multiple spatial and

temporal scales (Foltête et al. 2012). Limiting or regulating

factors such as temperature, water, and soil composition

have emerged as primary predictors of species distributions

on broad spatial scales (Pulliam 2000), although the his-

tories and frequencies of disturbances (whether natural or

human-induced), types of land use, and the heterogeneity

of landscape features (e.g., topography and habitats) may

be more important in explaining species distribution pat-

terns at finer scales (Guisan and Thuiller 2000).
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There has been increasing use of predictive species

distribution models (SDMs) since the early 1990s to

describe and quantify species-environment relationships

and then predict species occurrences (Guisan et al. 2006).

These models relate species occurrences or abundances to a

set of environmental variables using statistical methods

such as multiple regression, classification techniques,

environmental envelopes, or Bayesian approaches (Guisan

and Zimmermann 2000). The fitted model is then projected

onto a geographic space, providing spatially based proba-

bilities of occurrence (Guisan et al. 2007).

SDM approaches (Guisan and Thuiller 2005) have not

been consistently accurate, however, especially at finer

scales or in fragmented landscapes (Titeux et al. 2007;

Ashcroft et al. 2012; Foltête et al. 2012). A possible

explanation for these results is that SDMs are based solely

on limiting or regulating factors that operate at broad scales

(principally climatic, topographic, and vegetation vari-

ables) (Guisan et al. 2006), while other ecological pro-

cesses that can strongly interfere with species distribution

patterns, such as human-induced habitat changes, biotic

interactions, or accessibility (considered as the dispersal

ability of a given species, sensu Peterson 2006) are con-

sidered to lesser extents in this approach (Elith et al. 2006;

Ashcroft et al. 2012). If this view is correct, the addition of

variables describing landscape contexts that influence

species accessibility should improve the predictive per-

formance of SDMs, independent of the taxonomic groups

considered (Ashcroft et al. 2012; Foltête et al. 2012).

The absence of landscape variables may thus compromise

SDM performance and increase the numbers of false posi-

tives and negatives (Hirzel and Le 2008) for several reasons:

(1) local extinction: populations are more extinction-prone

in remnants of otherwise suitable sites due to environmental

or demographic stochasticity (Robinson and Quinn 1988;

Henle et al. 2004); (2) fragmentation may disrupt species

dispersal or movement, reducing re-colonization of other-

wise suitable sites (Fahrig 2003); (3) metapopulation

dynamics: local extinctions and re-colonization rates depend

on patch sizes and their isolation, implying that a target

species may become temporarily extinct at a particular

suitable site, but re-colonization may occur if the patches are

functionally connected in the landscape (Hanski 1998); (4)

source/sink dynamics: depending on a species’ prevalence

and tolerance, individuals may be located outside the bounds

of their potential distribution ranges as based on their eco-

logical niche (Lawton 1996; Pulliam 2000).

To test our predictions, we created and compared

models constructed with single regional scale predictors to

models with predictors operating at landscape scales. We

performed these comparisons for 36 species from four

phylogenetically distinct taxonomic groups (amphibians,

birds, primates, and spermatophytes). At the regional scale,

we built SDMs with environmental variables (considering

climate, topography, vegetation, and soil types), using

Maxent, and assessed their performance by using them to

predict species occurrences in 15 selected fragments in

which we conducted rapid surveys. We used the same

occurrence data to build models with patch/landscape

predictors at the landscape scale.

Materials and methods

Study region

We carried out this study in 15 forest fragments in southern

Minas Gerais State (MG), Brazil, within an area of

65,000 km2 within the Atlantic Forest domain (Fig. 1,

Table 1). The vegetation at these sites was either semi-

deciduous or ombrophilous forest. We employed two cri-

teria for fragment selection: (1) the set of fragments was

required to show a gradient of estimated species richness

based on SDMs (see details in item c—SDM); (2) all

fragments were required to be located within priority

conservation areas in Minas Gerais State (Drummond et al.

2005). The only exception to criteria number 2 was one of

the largest protected semi-deciduous fragments of Atlantic

Forest in southern Minas Gerais State (the Pouso Alegre

Municipal Natural Park) in the municipality of Pouso

Alegre. We also included data from nine additional frag-

ments near Alfenas, MG, for the bird species, to improve

model quality. We collected data from these fragments

using the methodologies described below.

Study design

Our study design employed seven principal steps: (a) se-

lection of the study species; (b) a search for secondary data

on the occurrence sites of those species; (c) building the

SDMs using the Maxent algorithm; (d) selecting study sites

across a gradient of species richness (low, medium, and

high) using SDMs; (e) rapid surveys of species presence/

absences within the selected sites; (f) computation of

landscape metrics; (g) data analysis.

Selection of the study species

We selected 36 species from four phylogenetically distinct

taxonomic groups (spermatophytes, amphibians, birds, and

primates), according to the criteria described below.

Spermatophytes

We chose seven tree species a priori (Campomanesia

guazumifolia, Chrysophyllum gonocarpum, Chrysophyllum
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marginatum, Cryptocarya aschersoniana, Eugenia florida,

Lecythis pisonis, and Pouteria torta) as prospective study

species, as they are normally associated with relatively

undisturbed forest environments in the focal region. We

attempted to include species that encompassed a range of

variations in terms of the following biological character-

istics: (a) pollination syndromes, (b) sexual systems,

(c) reproductive systems, (d) seed dispersal syndromes,

(e) flower sizes, (f) floral resources, (g) fruit sizes, and

(h) successional class (Denslow 1980). Most of these

species, however, were not encountered or were found in

only a few fragments. Only C. aschersoniana was

encountered with sufficient frequency to perform the

analyses. We therefore chose 11 additional species a pos-

teriori (Amaioua intermedia, Dalbergia villosa, Eugenia

sonderiana, Machaerium villosum, Miconia chartacea,

Fig. 1 Study area. a Location of Minas Gerais State in Southeastern

Brazil, South America. b Sites sampled with rapid surveys in priority

areas for conservation in Minas Gerais State (Drummond et al. 2005):

(GUA) Guaxupé, (MON) Monte Belo, (SGS) São Gonçalo do

Sapucaı́, (POU) Pouso Alegre, Serra da Mantiqueira priority area

(EXT Extrema, CAD Camanducaia, CAB Cambuı́, DEL Delfim

Moreira, MAR Maria da Fé, VIR Virgı́nia, PAS Passa Quatro, CAX

Caxambu, AIU Aiuruoca, BOC Bocaina de Minas, SRJ Santa Rita do

Jacutinga)

Table 1 Characteristics of the 15 sampled patches

Sampled locality Forest type Longitude Latitude NNDist (m) AREA (ha) NumP MedPS (ha) AWMPFD Pland (%)

Guaxupé SF 326,806 7,641,042 56.93 647.33 15 30,068.6 1.32 35.96

Monte Belo SF 367,288 7,636,518 14.68 506.89 12 40,209.8 1.22 41.3

São Gonçalo do Sapucaı́ SF 436,726 7,581,693 114.34 11.78 15 53,889.7 1.3 38.08

Pouso Alegre SF 400,222 7,542,311 188.63 241.11 7 23,647.4 1.28 25.96

Extrema OM 363,572 7,467,690 29.33 299.91 6 4861.52 1.33 65.73

Camanducaia OM 391,485 7,471,603 28.85 3832.49 10 21,514.1 1.35 39.57

Cambuı́ SF 385,460 7,491,535 72.32 17.3 20 36,970.8 1.31 8.61

Delfim Moreira OM 473,705 7,507,979 19,196 5502.18 2 4,874,985 1.32 78

Maria da Fé SF 461,716 7,536,448 45.83 125.57 15 81,888.1 1.32 37.61

Virgı́nia OM 486,079 7,526,940 59.43 72.61 15 28,857.9 1.36 26.26

Passa Quatro OM 506,106 7,523,553 93 81.95 16 69,960.5 1.31 22.12

Caxambu SF 504,168 7,567,917 26.5 159.43 12 53,731.1 1.26 17.31

Aiuruoca SF 543,681 7,574,960 33.44 70.97 12 28,751 1.35 19.14

Bocaina de Minas SF 563,544 7,549,539 80.19 53.93 13 29,125.3 1.36 34.66

Santa Rita de Jacutinga OM 583,824 7,548,284 26.44 111.27 10 7061.88 1.38 44.68

SF semideciduous forest, OM ombrophilous dense forest, NNDist distance from the nearest neighbor fragment, AREA fragment area, NumP

number of patches in the landscape, MedPS average size of the fragments, AWMPFD fractal dimension of the fragment average weighted by the

area, Pland percentage of forest cover in the landscape. Coordinates datum (SAD69/UTM/23South)
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Myrcia splendens, Nectandra oppositifolia, Ocotea

corymbosa, Prunus myrtifolia, Psychotria velloziana, and

Tapirira obtusa). In addition to the seven criteria cited

above, we required that each species occur in at least five

of the study fragments.

Amphibians

We selected six prospective amphibian species associated

with natural forest environments in the study region

(Aplastodiscus leucopygius, A. perviridis, Haddadus bino-

tatus, Ischnocnema guentheri, Proceratophrys boiei, and

Vitreorana eurygnatha). Each species had to comply with

the following criteria (Fleishman et al. 2000): (1) it could

not be extremely rare in terms of abundance; (2) it could

not be a generalist in terms of habitat occupation; (3) it

could not have a wide geographic distribution; and, (4) it

needed to be moderately sensitive to human disturbance.

Birds

We selected ten bird species a priori: Automolus leucoph-

thalmus, Dysythamnus mentalis, Habia rubica, Lochmias

nematura, Mackenziena severa, Pyriglena leucoptera, Si-

tassomus griseicapillus, Turdus albicollis, Xiphorhynchus

fuscus, and Xenops rutilans. We required the species to

vary widely in terms of the following criteria: geographic

distribution, dependence on forest habitats, dispersal abil-

ity, home-range size, and degree of micro-habitat

specialization.

Primates

Given the low species richness of this group, we surveyed

all four primate species known to naturally occur in the

study region (Alouatta guariba clamitans, Callicebus

nigrifrons, Callithrix aurita, and Sapajus nigritus).

Brachyteles arachnoides may occur in the study area, but

its rarity prevents it from being encountered in rapid sur-

veys and it does not naturally occur over the entire study

area.

Secondary data

We obtained occurrence data on the species studied here

from the Virtual Reference Center on Environmental

Information (CRIA), the specialized literature, and bio-

logical collections (Herbário do Departamento de Botânica

da UFMG (Herbário BHCB), Herbário ESAL (Escola

Superior de Agronomia de Lavras), Museu de Zoologia da

Universidade de São Paulo; Museu Nacional do Rio de

Janeiro/UFRJ; Museu de História Natural Capão da Imbuia

de Curitiba/PMC; Museu de História Natural da Unicamp –

MHNU; Coleção Zoológica de Referência da Seção de

Vı́rus Transmitidos por Artrópodos - Instituto Adolfo Lutz

- Banco de aves; Terrestrial Vertebrate Specimens – The

Museum of Vertebrate Zoology, Berkeley; the American

Museum of Natural History, New York; Museu da Usina

Hidrelétrica de Segredo de Foz do Jordão, COPEL, the

Field Museum of Natural History de Chicago/EUA, Cole-

ção de Aves do Museu do Parque Nacional do Itatiaia).

SDM using Maxent

We modeled species occurrences within the spatial range

of six Brazilian states (Espı́rito Santos, Rio de Janeiro,

Minas Gerais, São Paulo, Paraná, and Santa Catarina)

between 198 S and 288 S, extending inland from the coast

to 51�W.

The modeling process employed 19 bioclimatic vari-

ables from the WORLDCLIM Ver. 1.4 database (available

at http://www.worldclim.org/current.htm) related to cli-

mate, topography, vegetation, and soil type, at a 30-arc

second resolution (900 m resolution, 1790 col-

umns 9 1846 rows), projected using WGS 1984. We also

calculated the potential evapotranspiration rates (PET

ratio), following Loiselle et al. (2008), as the mean annual

temperature (�C) divided by total annual precipitation

(mm); this ratio was then multiplied by an empirically

derived constant (approximately 60) (Holdridge et al.

1971). At a PET ratio of 1.0, potential evapotranspiration

approximately equals total precipitation for an average

year; values above 1.0 indicate increasing aridity and val-

ues below 1.0 indicate increasing humidity.

We extracted the topographic variables from Shuttle

Radar Topography Mission (SRTM) maps (available at

http://www.worldclim.org/current.htm). We used this layer

to derive slope angles and slope aspects. We obtained

vegetation and drainage data, as well as soil type, fertility

and texture from Embrapa Solos maps (available at http://

mapoteca.cnps.embrapa.br/geoacervo) at 1:5,000,000

scale, and re-sampled them to a resolution of approxi-

mately 1 km, to standardize all variable scales.

We performed Pearson correlation matrix analysis to

exclude highly correlated predictors from the SDM by

extracting the values of the 27 continuum variables from

50,000 randomly selected points in the study region. This

we followed with Next, we performed correlation analysis

between all possible pairs of variables to detect highly

correlated pairs (correlation threshold Pearson’s r = 0.7).

In cases of correlation, we used only one of those variables

in the modeling process. The final reduced data set com-

prised 18 continuum and two categorical variables

(Table 2).

We used the Maximum entropy algorithm (Maxent

version 3.0.6, available at www.cs.princeton.edu/

É. Hasui et al.
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*schapire/maxent/) to model the geographic distributions

of suitable habitats for the 36 selected species, using

occurrence data set as the dependent variable and the 20

environmental variables as the predictors (for a detailed

mathematical description of Maxent and its application to

SDM, see Phillips et al. 2006). We calibrated the models

using 70% of the occurrence data (randomly chosen), as a

training sample, and evaluated them with the remaining

30% (test data). We replicated the data by bootstrapping

100 random partitions with replacements.

We used the methods described by Phillips et al. (2006)

to evaluate presence/random data using Receiver Operator

Characteristic (ROC) curve analysis. The ROC curve rep-

resents the relationship between the proportion of correctly

predicted presences (sensitivity) and 1 minus the propor-

tion of the correctly predicted absences (specificity). The

Area Under the ROC curve (AUC) measures the ability of

the model to correctly classify a species as present or

absent. The AUC is interpreted as the probability that

random false positives and random true positives are cor-

rectly predicted by the Maxent model; an AUC value of 0.5

indicates that model predictions were no better than ran-

dom guessing. While there is no full consensus in the lit-

erature, AUC values [0.70 are generally considered a

baseline for model accuracy. According to Pearce and

Ferrier (2000), values below 0.70 indicate poor model

performance, as they suggest similar rates of correct and

erroneous predictions; values between 0.70 and 0.90 indi-

cate moderately useful models; and values exceeding 0.90

indicate excellent accuracy.

Study site selection

We built occurrence maps (binomial) for the 36 study

species from the reclassification of the continuous raster

maps of occurrence probabilities (ranging from 0 to 100

percent) provided by Maxent. We then established a

threshold of 66% occurrence probability, with probabili-

ties below this value indicating species absence, and

above it, species presence. We then combined these spe-

cies occurrence maps into a synthesis-map of species

richness. We classified the municipalities represented in

this synthesis-map into three categories of predicted

richness: low (\12 species), medium (12–24) and high

([24); we then selected four municipalities from each

richness category. Finally, we selected one fragment in

each municipality to carry out the rapid ecological sur-

veys of the four taxonomic groups.

Table 2 Environmental variables (18 continuum ?2 categorical variables) used in the Maxent niche models to predict the distribution of 36

species in four phylogenetically distant taxonomic groups (spermatophytes, amphibians, birds and primates)

Environmental variable Source Data type Unit Resolution

(arc-second)

BIO1 = annual mean temperature Worldclim Continuous (�C * 10) 30

BIO2 = mean diurnal range (mean of monthly (max

temp - min temp))

Worldclim Continuous (�C * 10) 30

BIO3 = isothermality (P2/P7) (*100) Worldclim Continuous (�C * 10) 30

BIO4 = temperature seasonality (standard deviation *100) Worldclim Continuous (�C * 10) 30

BIO7 = temperature annual range (P5–P6) Worldclim Continuous (�C * 10) 30

BIO10 = mean temperature of warmest quarter Worldclim Continuous (�C * 10) 30

BIO11 = mean temperature of coldest quarter Worldclim Continuous (�C * 10) 30

BIO12 = annual precipitation Worldclim Continuous (mm) 30

BIO13 = precipitation of wettest month Worldclim Continuous (mm) 30

BIO16 = precipitation of wettest quarter Worldclim Continuous (mm) 30

BIO18 = precipitation of warmest quarter Worldclim Continuous (mm) 30

Potential evapotranspiration Derived from Worldclim Continuous (mm) 30

Elevation SRTM Continuous metros 30

Slope angle Derived from SRTM Continuous degree 30

Slope aspect Derived from SRTM Continuous degree 30

Soil Embrapa Solos Categorical 248 categories

Texture Embrapa Solos Continuous 11 categories

Drenagem Embrapa Solos Continuous 15 categories

Fertility Embrapa Solos Continuous 9 categories

Vegetation Embrapa Solos Categorical 47 categories

Additions of landscape metrics improve predictions of occurrence of species distribution models
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Rapid survey methods

We applied the rapid ecological assessment method to

identify key target species—not to conduct full species

inventories (Sayre et al. 2000). This method inevitably

results in a tradeoff between the efficiency of encountering

target species and the area that can be covered—but it is

recommended in studies with objectives such as ours

(Sayre et al. 2000).

Spermatophytes

We employed the point-centered quarter method (Cottam

and Curtis 1956) to survey the tree community. We dis-

tributed twenty points (4 individuals sampled per point)

spaced 20 m apart along a 300 m transect at the central

region of each forest fragment (total: 1200 individuals, 80

per fragment). We sampled the closest phanerophyte with a

diameter at breast height C3 cm in each quadrant. We

deposited voucher Specimens in the herbarium of the

Universidade Federal de Alfenas (UALF), and made spe-

cies identifications by comparisons with herbarium speci-

mens and the botanical literature. Nomenclature follows

the Angiosperm Phylogeny Group (APG) system (APG III

2009).

Amphibians

We actively searched for amphibians in potential breeding

sites (such as streams, wetlands, and temporary ponds)

within the forest fragments and along forest edges and trails

used to access the study sites (adapted from Crump and Scott

1994) for a specified time period (between 19:00 and mid-

night). We also used playbacks of frog and toad vocalizations

to locate species that could not otherwise be seen or heard.

Birds

We employed a playback approach to survey bird species.

This technique consisted of broadcasting bird vocalizations

to simulate a territorial invasion by a conspecific (Falls

1981). If present in the vicinity, individuals of the target

species will respond by calling and/or approaching the

sound source. We established three playback points within

each forest fragment, approximately 100 m from the forest

edge and 200 m from one another, to ensure sampling

independence. We made two visits on consecutive days to

each sampling point from 07:00 to 10:00. We broadcast

each vocalization for 1 min, followed by three minutes of

silence (Boscolo et al. 2006). We carried out this protocol

three consecutive times. The species sequence in a given

session and the playback volumes were the same

throughout the study.

Primates

We employed several complementary approaches for

detection of primate species. For Callithrix aurita, Cal-

licebus nigrifrons and Sapajus nigritus we reproduced long

range vocalizations that are known either to play roles in

inter-group communication (long calls of another species

of Callithrix and C. nigrifrons duets) or for maintaining

contact between widely separated group members (S.

nigritus whistles), both within the forest and/or at forest

edges. We played back up to four times at each playback

point within the fragments (in different directions), to cover

a 360� radius; at forest edges, we reproduced the calls in

two directions (45� from the edge line). We stopped the

playbacks of a given species as soon as a response was

obtained. Some occurrences were recorded through direct

visual or auditory contacts (Rosales-Meda 2007). We also

interviewed farmers and people living or working near the

fragments about the occurrence of primates. This was

necessary because Alouatta guariba clamitans is quite

insensitive to playbacks, and C. aurita and S. nigritus

might not respond to playbacks even if they are present. If

the interviewees mentioned the occurrence of cal-

lithrichids, we would include these data only if we subse-

quently located and identified the species (given the

occurrence of an exotic species of the genus in the region,

C. penicillata). We also obtained information regarding the

presence of primates in the Pouso Alegre and Passa Quatro

localities by consulting management plans of those pro-

tected areas. Given the lower richness of this group, we did

not restrict ourselves to the two-day sampling regimes, and

if there were indications that a species might occur in a

locality (through interviews, for example), but we were

unsure about it (which Callithrix species, for example, or

conflicting or apparently inaccurate reports), we returned to

the fragments on other occasions to attempt to confirm the

findings. We did not use doubtful occurrences.

Landscape metrics

We extracted landscape metrics from an Atlantic Forest

vegetation map produced by SOS Mata Atlântica/INPE

(2008), using Fragstats 3.0 (McGarigal et al. 2002), with

the V-LATE and Patch Analyst 5.0 plug-in for ArcGIS.

The mapping scale was 1:50,000 in a vector format, which

we subsequently converted to raster in ArcGIS with 30 m

spatial resolution to improve metric computations. We

calculated landscape metrics within a circular buffer

(2000 m radius) around the geometric center of each

sample patch. We selected six non-correlated metrics to

consider different species perceptions of landscape struc-

tures that could affect their occurrences: patch area, median

patch size, number of patches, Euclidean nearest-neighbour

É. Hasui et al.
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distance, area-weighted mean patch fractal dimension, and

the percentage of forest cover (Table 3). To avoid spatial

autocorrelation, we tested correlations among the metrics

using the Pearson correlation test (coefficient[0.7).

Data analysis

We extracted the probability of occurrence of each species

in each fragment from the SDMs. The continuous raster

maps of occurrence probabilities and the landscape maps

had different resolutions (cell sizes of 900 m 9 900 m and

30 m 9 30 m respectively). We thus re-sampled each of

the 36 continuous raster maps of occurrence probabilities

to a resolution of 30 m to standardize their resolutions. We

then extracted the grid cell values of occurrence proba-

bilities from each study fragment, assuming that the

probability of the species occurring in the grid cell was

related to its presence/absence data collected during the

rapid survey.

We then ran a set of general linear models (GLM) for

each studied species, with binomial distributions, which

could be either simple or additive. In each model, species

presence/absence was related to: (1) the probability of

occurrence only (SDMs); (2) landscape metrics only; and,

(3) additive models of the probability of occurrence and

landscape metrics, incorporating one landscape metric at a

time.

We evaluated the likelihood of each model using the

Akaike Information Criterion, corrected for small sample

sizes (AICc) (Burnham and Anderson 1998). We ranked

the models in ascending AICc order, and DAICc was cal-

culated for each model as the difference between its own

AICc and the lowest AICc value (best model). We con-

sidered all models with DAICc values less than 2 as equally

plausible. We considered that a species produced a valid

model if the null model was not plausible. We conducted

the analyses using the R program, version 2.14.2 (R

development core team 2012).

Results

The SDMs of all taxonomic groups had excellent accura-

cies, with mean training AUCs near 0.95 (±0.05) (Suppl.

Mat.). The models could therefore be considered ‘‘reliable’’

for predicting local presence or absence. When we com-

pared the actual observations of occurrence to the predicted

occurrences in the SDMs, however, the models were rarely

plausible. Actually, just 3% of the species (n = 1) showed

plausible models using SDM alone (DAICc\ 2; Table 4).

Table 3 Metrics used to describe the sample patches or the landscape structure around them

Acronym Metric Description Ecological relevance Reference

Area Patch area Area (ha) of each patch Patch area is related to minimum area

requirements of species and therefore

associated with the probability of local

extinction

Blake (1983),

Temple and

Cary (1988)

MedPS Median patch

size

Median area of patches (ha) in the landscape It is the same relevance as Patch area, but

refers to the landscape metrics

Blake (1983),

Temple and

Cary (1988)

NumP Number of

patches

Total number of forest patches in the

landscape –an indication of the extent of

subdivision or forest fragmentation

Subdivision of patches may lead to

population subdivision and has implications

for metapopulation dynamics

Hanski (1998)

NNDist Euclidean

nearest-

neighbour

distance

Shortest straight-line distance (m) between a

focal patch and its nearest neighbor patch

of the same class—represents a measure of

isolation (range C 0, without limit)

Patch isolation affects inter-patch movement

of organisms and is related to colonization

dynamics and rescue effects

Brown and

Kodric-Brown

(1977) and

Martensen et al.

(2008)

AWMPFD Area-

weighted

mean patch

fractal

dimension

Patch shape complexity measure weighted

by patch area (range

1 ^ AWMPFD ^ 2). Low values are

found when a patch has a compact

quadrangular or rectangular form with

relatively small perimeter relative to the

area. If the patches are more complex and

fragmented, the perimeter increases

relative to the area, which causes a higher

fractal dimension

Shape complexity is related to edge effects,

which has implications for interior-

sensitive species or affects inter-patch

movements for the other species

Ewers and

Didham (2006)

Pland Percentage of

forest

Percentage of the landscape comprised of

forest

The amount of habitat and its configuration

affects population persistence

Andrén (1994)

and Fahrig

(2003)

Additions of landscape metrics improve predictions of occurrence of species distribution models
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The percentage of species with plausible models

increased to 22% (n = 8 species) when we combined

SDMs with landscapes metrics. There were expressive

increments in the wAICc in these models as compared to

the wAICc of the model with SDMs alone (Table 4),

although we did not find similar responses across all of the

taxonomic groups. These models showed good perfor-

mances with 40% of the birds (n = 4 species), 33% of the

amphibians (n = 2 species), 16% of the plants (n = 2

species), and 0% of the primates.

The spermatophytes showed the most diverse responses

in relation to the best predictors (Table 4). For 42% of the

species, the SDMs showed poor predictive abilities, even

when we added landscape metrics. The best models for

these species were composed of landscape metrics only.

We also observed species (e.g., Eugenia sonderiana) that

responded only to SDMs, or even species (e.g., Calyp-

tranthes clusiifolia) that responded better to the combina-

tion of multiple scale predictors. The SDMs showed poor

performances overall for primates, and we only found valid

models using landscape metrics.

Discussion

SDMs have been intensively used in recent years to gen-

erate probability distributions of species (or group of spe-

cies) at broad scales in ecological evaluations (Engler et al.

2004; Brotons et al. 2004; Elith and Leathwick 2009).

Model performance in most of these studies was evaluated

using AUC values (Hijmans 2012). In the present study, the

AUC values indicated excellent abilities of the models to

correctly distinguish between presence/absence in the sites

based on secondary occurrence data. For most of our spe-

cies, however, the AUC values did not reflect actual

observations of occurrences at the 15 sites surveyed. Just

one species had its occurrence adequately predicted by

SDM alone. The poor predictive abilities of those models

reflect the failure to take into account factors that are

important in determining species distributions (Filz et al.

2013), such as those related to landscape contexts. The

percentages of species that were adequately predicted

increased when landscape metrics were added to the mod-

els. Contrary to our expectations, however, the number of

species that benefited from such inclusion was still limited

(22% of the species studied) and varied across (and within)

taxonomic groups. Previous studies, likewise carried out at

multiple spatial scales, have arrived at similar conclusions,

namely, the greater efficiency of models incorporating

predictors operating at multiple scales, as opposed to those

with predictors working at only a single scale (Hopkins

2009; Cabeza et al. 2010; Ashcroft et al. 2012; Foltête et al.

2012). There seem to be two main explanations for this

result in the present work. The first explanation relates to

the fact that we examined a highly fragmented landscape.

SDM predicts species occurrences based on their funda-

mental niches (see Warren 2012 for a thorough evaluation

of SDMs), but this approach assumes species distributions

to be at equilibrium with current environmental conditions

and that relevant environmental gradients have been ade-

quately sampled (Thuiller et al. 2004). Most ecosystems,

however, have experienced anthropogenic impacts over

long periods of time and are also highly fragmented. Under

such conditions, the presence of a given species in a frag-

ment may depend less on its fundamental niche and more on

the characteristics of the fragments themselves, and the

landscapes in which they are located (Elith and Leathwick

2009). The SDMs may over-predict species distributions in

these fragments. Adding landscape metrics to the models

therefore adds the advantage of allowing human transfor-

mations of the landscape to be taken into account and

incorporates species accessibility into the modeling process

(sensu Peterson 2006).

The second explanation for the greater efficiency of

models with multiple scale predictors is related to their

spatial resolution (grain cell size). The grain describes

proprieties of the data or the analysis, such as spatial

accuracy and the precision of the data records. Recent

studies have demonstrated the implications of using dif-

ferent spatial resolution data in SDMs (Ferrier and Watson

1997; Pearman et al. 2008), with predictor effects on spe-

cies occurrence-accuracy being dependent on the spatial

accuracy of the data (associated with the characteristics of

the terrain and the species itself). Therefore, the finer the

spatial resolution used, the better the predictive ability of

SDMs to identify niche shifts. It is therefore likely that the

poor predictive ability of SDMs encountered here was due

to the 30-arc second resolution (900 m), which was too

coarse to represent true high habitat heterogeneity inside

each grid cell in the surveyed fragment. This heterogeneity

is, however, considered in landscape approaches (30 m of

resolution) and could be crucial to predicting current spe-

cies occurrences.

This result suggests that multiple-scale predictor studies

can allow us to consider relevant environmental variables

that vary and effect species at different spatial scales (Elith

and Leathwick 2009); they can also help identify species

that are especially prone to shifts in their environmental

niche (Pearman et al. 2008). In agreement with our

hypothesis, the addition of landscape predictors improved

the predictive performance of SDMs—although the num-

ber of species that benefited was limited, and their

responses varied across taxonomic groups (amphibians,

birds, primates, and spermatophytes, ranging from 0 to

40%); similar results were reported by Thuiller et al.

(2004) and Meyer and Thuiller (2006).
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Our findings must be interpreted with caution, however,

because there were limitations built into our study design.

First, the positive factor of encompassing a broad geo-

graphic region necessarily decreased the number of frag-

ments that could be efficiently surveyed, and it will be

important for future studies to determine the minimum

number of fragments necessary to generate consistent

habitat suitability models, seeking the best and most cost-

effective approaches, whether for conservation or theoret-

ical purposes. Employing abundance data is particularly

important for very common species (such as Callicebus

nigrifrons), as valid models cannot be generated for them

using only presence/absence data. Finally, the a posteriori

choice of the spermatophyte species in this study increased

the chances of finding valid models (and most of the valid

models in the present study were of spermatophytes)—but

this does not change or invalidate our conclusions, because

such an approach did not affect the specific variables that

predicted species responses.

In conclusion, we recommend the careful use of SDMs

and their AUC values to evaluate model performance, as

well as the use of variables from both SDMs and landscape

structure, independent of the focal taxonomic group. The

combination of both types of variables will generate more

accurate species occurrence models. Given the large intra-

and inter-group variability of the parameters that predict

species occurrences, we further recommend using several

species from different groups when employing these

models for conservation purposes.
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Thuiller W, Brotons L, Araújo MB, Lavorel S (2004) Effects of

restricting environmental range of data to project current and

future species distributions. Ecography 27:165–172

Titeux N, Dufrene M, Radoux J, Hirzel AH, Defourny P (2007)

Fitness-related parameters improve presence-only distribution

modelling for conservation practice: the case of the red-backed

shrike. Biol Conserv 138:207–223

Warren DL (2012) In defense of ‘niche modeling’. Trends Ecol Evol

27:497–500
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